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Abstract

Axial heat conduction effects within the fluid can be important for duct flows if the Prandtl number is relatively low

(liquid metals). In addition, axial heat conduction effects within the flow might also be important, if the heating zone is

relatively short in length. The present paper shows an entirely analytical solution to the extended Graetz problem with

piecewise constant wall temperature boundary conditions. The solution is based on a selfadjoint formalism resulting

from a decomposition of the convective diffusion equation into a pair of first order partial differential equations.

The obtained analytical solution is as simple to compute as the one without axial heat conduction. The analytical results

are compared to available numerical calculations and good agreement is found.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The prediction of the heat transfer characteristics in

pipe and channel flows is of theoretical interest and

practical importance. Heat transfer for hydrodynami-

cally fully-developed pipe and channel flows has there-

fore attracted a lot of researchers in the past.

Normally, the effect of streamwise conduction in the

flow on the heat transfer can be neglected. The classical

Graetz problem deals with heat transfer in the thermal

developing region of the flow under such conditions.

Good reviews on this subject for laminar and turbulent

flows can be found in [1,2].

However, if the Peclet number (PeD = ReDPr) in the

flow is small, axial heat conduction in the fluid becomes
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important. This is the case, for example, in compact heat

exchangers where liquid metals are used as the working

fluids. In addition, axial heat conduction effects in the

flow might also be important for larger values of the

Peclet number, if the length of the heating zone is very

short. In the past, many investigations have been carried

out which dealt with the solution of the extended Graetz

problem (the Graetz problem considering axial heat con-

duction in the fluid) for thermally developing laminar

flow in a pipe or in a parallel plate channel. Extensive lit-

erature reviews on this subject are given in [1,3]. Many

of the solutions cited in [1,3] for the extended Graetz

problem are based on the fundamental assumption that

the solution of the problem has the same form of the ser-

ies solution as the Graetz problem without axial heat

conduction in the fluid. This approach results in a

non-selfadjoint eigenvalue problem with eigenvalues

that could, at least in principle, be complex and eigen-

vectors that could be incomplete. Several strategies have

been developed in the past to overcome this problem.
ed.
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Nomenclature

a thermal diffusivity [m2/s]

a1, a2 functions

Aj constants

cp specific heat at constant pressure [J/(kgK)]

D hydraulic diameter, 4h (planar channel), 2R

(circular pipe) [m]
~f , ~S vectors

F flow index, 0 for a planar channel, 1 for a

circular pipe

DE relative error, (Nuelliptic � Nuparabolic)/

Nuelliptic
h distance between the centreline and the wall

(planar duct) [m]

k thermal conductivity [W/(mK)]

L characteristic length, L = h (planar duct),

L = R (circular pipe) [m]

L
�

matrix operator

n coordinate [m]

~n dimensionless coordinate

NuD Nusselt number based on the hydraulic

diameter

p pressure [Pa]

Pr Prandtl number

PeL Peclet number based on the characteristic

length L

PeD Peclet number based on the hydraulic

diameter

Prt turbulent Prandtl number

r radial coordinate [m]

R pipe radius [m]

ReL Reynolds number based on the characteris-

tic length L

ReD Reynolds number based on the hydraulic

diameter

T temperature [K]

T0 uniform temperature for x ! �1 [K]

Tb bulk-temperature [K]

Tw wall temperature [K]

u axial velocity [m/s]

�uo axial mean velocity [m/s]

x axial coordinate [m]

x1 length of the heated zone [m]

~x dimensionless axial coordinate

x̂ axial coordinate scaled by the length of the

heating zone

Greek symbols

ehx eddy diffusivity in axial direction [m2/s]

ehn eddy diffusivity in normal direction [m2/s]

em eddy kinematic viscosity [m2/s]

q density [kg/m3]

kj eigenvalue

h dimensionless temperature

hb dimensionless bulk temperature

m kinematic viscosity [m2/s]

R axial energy flow
~Uj eigenfunction
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Hsu [4], for example, constructed the solution of the

problem from two independent series solutions for

x < 0 and x > 0. Both the temperature distribution and

the temperature gradient were then matched at x = 0

by constructing a pair of orthonormal functions from

the non-orthogonal eigenfunctions by using the Gram–

Schmidt-orthonormalization procedure. Hence this

method is clearly plagued with the uncertainties arising

from an expansion in terms of eigenfunctions and eigen-

values belonging to a non-selfadjoint operator. How-

ever, Papoutsakis et al. [5] showed that it is possible to

produce an entirely analytical solution to the extended

Graetz problem for Dirichlet boundary conditions.

Their solution is based on a selfadjoint formalism result-

ing from a decomposition of the convective diffusion

equation into a pair of first order partial differential

equations.

In addition several investigations have been carried

out in the past concerning the extended Graetz problem

in a parallel plate channel. Deavours [6] presented an

analytical solution for the extended Graetz problem by

decomposing the eigenvalue problem for the parallel
plate channel into a system of ordinary differential

equations for which he proved the orthogonality of the

eigenfunctions. There are also several numerical investi-

gations which deal with the extended Graetz problem

for laminar flow in a pipe or a parallel plate channel,

for example [7,8]. Hennecke [7] was one of the few,

who also investigated the behaviour of the Nusselt num-

ber near the end of the heating zone. For more detailed

information concerning numerical investigations the

reader is referred to [1–3].

Although axial heat conduction can be ignored for

turbulent convection in ordinary fluids and gases, with

liquid metals this might not always be justified. In fact

because of the very low Prandtl numbers for liquid met-

als (0.001 < Pr < 0.06) the Peclet number can be smaller

than ten in turbulent duct flows. Lee [9] studied the ex-

tended Graetz problem in turbulent pipe flow. He found

that for Peclet numbers below 100, axial heat conduc-

tion in the fluid becomes important in the thermal en-

trance region. He investigated a pipe which was

insulated for x < 0 and had a uniform wall temperature

for x > 0. Lee used the method of Hsu [4] to obtain a
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series solution for the problem. Weigand [10] extended

the method of Papoutsakis et al. [5] to solve the extended

Graetz problem for turbulent flow inside a pipe and a

parallel plate channel. This has been done by developing

a new inner product between two vectors. Comparisons

of the analytical solution with measurement data

and numerical computations showed good agreement.

Weigand et al. [11] investigated numerically the extended

Graetz problem in a parallel plate channel with piece-

wise constant wall temperature boundary conditions.

They used different turbulence models for calculating

the turbulent heat flux. Their investigation showed that

the normally used assumption that the eddy diffusivity in

axial and normal direction are the same is correct for the

range of parameters under investigation.

The purpose of the present paper is to investigate

analytically the extended Graetz problem for laminar

and turbulent flow in a pipe and a parallel plate channel

with piecewise constant wall temperature boundary con-

ditions. The effect of a changing length of the heating

zone on the Nusselt number distribution for this bound-

ary condition will be investigated in detail. For the case

of a piecewise constant wall heat flux a similar investiga-

tion has been performed by Weigand et al. [12]. To the

best knowledge of the authors, no analytical investiga-

tion is known in literature for laminar as well as for tur-

bulent flow in pipe and channel flows for piecewise

constant wall temperature conditions, which takes the

axial heat conduction effect in the flow into account.
2. Analysis

Fig. 1 shows the geometrical configuration and the

coordinate system. The characteristic length L denotes

half of the channel height h for the flow in a parallel

plate channel or the radius R for the flow in a circular

pipe. It is assumed that the flow enters the duct with a

hydrodynamically fully-developed laminar or turbulent

velocity profile and with a uniform temperature profile
Fig. 1. Geometrical configuration and coordinate system.
T0 for x !�1. The wall temperature is maintained at

T0 for x 6 0 and for x P x1 and at T1 for 0 < x < x1.

Under the assumptions of an incompressible flow with

constant physical properties, negligible viscous and tur-

bulent energy dissipation and hydrodynamically fully-

developed flow, the energy equation is given by

qcpuðnÞ
oT
ox

¼ 1

rF
o

on
rF ðk þ qcpehnÞ

oT
on

� �
þ o

ox
ðk þ qcpehxÞ

oT
ox

� �
ð1Þ

with the boundary conditions

n ¼ L : T ¼ T 0; x6 0 and xP x1; T ¼ T 1; 0 < x < x1

n ¼ 0 : oT=on ¼ 0

lim
x!�1

T ¼ T 0

ð2Þ

The index F which appears in Eq. (1) is equal to 0 for

a planar duct and equal to 1 for a circular pipe. The

velocity distribution u, which appears in Eq. (1), has

been calculated from the momentum equation for

hydrodynamically fully-developed flow. For a turbulent

flow, the turbulent shear stress has been approximated

by using a mixing length model. The reader is referred

to Weigand [10] for more details. By introducing the fol-

lowing dimensionless quantities

h ¼ T � T 0

T 1 � T 0

; ~x ¼ x
L

1

PeL
; ~u ¼ u

�u0
;

~n ¼ n
L
; ~r ¼ r

L

PeL ¼ ReLPr; ReL ¼
�u0L
m

; Pr ¼ m
a
;

~em ¼ em
m
; Prt ¼

em
ehn

ð3Þ

into Eqs. (1) and (2), the energy equation can be cast

into the following non-dimensional form

~u
oh
o~x

¼ 1

Pe2L

o

o~x
a1ð~nÞ

oh
o~x

� �
þ 1

~rF
o

o~n
~rF a2ð~nÞ

oh
o~n

� �
ð4Þ

with the boundary conditions

~n ¼ 1 : h ¼ 0; ~x6 0 and ~xP~x1; h ¼ 1; 0 < ~x < ~x1
~n ¼ 0 : oh=o~n ¼ 0

lim
~x!�1

h ¼ 0

ð5Þ

The functions a1ð~nÞ and a2ð~nÞ are given by

a1ð~nÞ ¼ 1þ Pr
Prt

~em
ehx
ehn

� �
ð6Þ

a2ð~nÞ ¼ 1þ Pr
Pr

~em ð7Þ

t
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In the following solution process for Eq. (4) no assump-

tions are required about the functions a1ð~nÞ and a2ð~nÞ.
The solution presented here holds for arbitrary func-

tions a1ð~nÞ and a2ð~nÞ as long as a1 P 1, a2 P 1 which

is obviously true from the structure of Eqs. (6) and

(7). Therefore, the turbulent Prandtl number as well as

the ratio ehx/ehn, which were used in Eqs. (6) and (7), will

be specified later.

Papoutsakis et al. [5] showed that it is possible to

solve Eq. (4) for laminar pipe flow (a1 = a2 = 1) by

decomposing the elliptic partial differential equation

into a pair of first order partial differential equations.

For turbulent flows this has been shown later by

Weigand [10] by using a different inner product between

two vectors. The ensuing procedure for solving the here

considered problem follows the method given by Refs.

[5,10] for deriving the solution of the more general prob-

lem, considered here.

Let us define a function Rð~x; ~nÞ, which may be called

the axial energy flow through a cross-sectional area of

the height ~n by

Rð~x; ~nÞ ¼
Z ~n

0

~uh� 1

Pe2L
a1ð�nÞ

oh
o~x

� �
~rF d�n ð8Þ

Introducing R, defined by Eq. (8), into the energy equa-

tion (4) results in the following system of partial differen-

tial equations

o

o~x
~Sð~x; ~nÞ ¼ L�

~Sð~x; ~nÞ ð9Þ

with the two component vector ~S and the operator L�
given by

~S ¼
hð~x; ~nÞ
Rð~x; ~nÞ

� �
; L� ¼

PeL~u
a1ð~nÞ

� Pe2L
~rF a1ð~nÞ

o

o~n

~rF a2ð~nÞ
o

o~n
0

2664
3775

ð10Þ

The boundary conditions belonging to Rð~x; ~nÞ can be

derived from Eqs. (5) and (8)

~n ¼ 0 : Rð~x; 0Þ ¼ 0

lim
~x!�1

R ¼ 0
ð11Þ

Before calculating the solution of Eq. (4), some inter-

esting details about the operator L� and the correspond-

ing eigenvalue problem for Eq. (9) should be presented.

The most remarkable aspect of L� is that it gives rise to a

selfadjoint problem even though the original convective

diffusion operator is non-selfadjoint. This fact is of

course dependent on the sort of inner product between

two vectors, which will be used. If we define an inner

product between two vectors

~U ¼
U1ð~nÞ
U2ð~nÞ

� �
; eK ¼

K1ð~nÞ
K2ð~nÞ

� �
ð12Þ
as

~U; ~K
D E

¼
Z 1

0

a1ð~nÞ~rF

Pe2L
U1ð~nÞK1ð~nÞ þ

1

a2ð~nÞ~rF
U2ð~nÞK2ð~nÞ

� �
d~n

ð13Þ

and the following domain for L�

DðL�Þ ¼ ~U 2 H : L�
~Uðexists andÞ 2 H ;U1ð1Þ ¼ U2ð0Þ ¼ 0

� �
ð14Þ

then it can be shown that L� is a symmetric operator in

the Hilbert space H of interest (this means that

h~U; L� ~Ki ¼ hL� ~U; ~Ki). The reader is referred for a detailed

explanation to Weigand [10]. Thus the selfadjoint eigen-

value problem associated with Eq. (14) is given by

L�
~Uj ¼ kj~Uj ð15Þ

where ~Uj denotes the eigenvector corresponding to the

eigenvalue kj. Using the definition of the matrix operator

L� given by Eq. (10), the eigenvalue problem, Eq. (15),

can be rewritten in the form

Pe2L
~uð~nÞ
a1ð~nÞ

Uj1 �
1

~rF a1ð~nÞ
U0

j2

� �
¼ kjUj1 ð16Þ

~rF a2ð~nÞU0
j1 ¼ kjUj2 ð17Þ

If Uj2 is eliminated from Eq. (16), the following eigen-

value problem for Uj1 can be obtained (see also Weigand

[10])

~rF a2ð~nÞU0
j1

h i0
þ ~rF

kja1ð~nÞ
Pe2L

� ~u
� �

kjUj1 ¼ 0 ð18Þ

Eq. (18) has to be solved in conjunction with the bound-

ary conditions

U0
j1ð0Þ ¼ 0; Uj1ð1Þ ¼ 0 ð19Þ

In addition, an arbitrary normalizing condition

Uj1ð0Þ ¼ 1 ð20Þ

will be used. Eq. (18) possesses both, positive eigen-

values kþj with the corresponding eigenvectors Uþ
j and

negative eigenvalues k�j with eigenvectors U�
j . This is be-

cause the operator L� is neither positive nor negative def-

inite. All kj are real because they are in fact the

eigenvalues of a selfadjoint problem. Because the two

sets of eigenvectors, normalized according to Eq. (20),

constitute an orthogonal basis in H (see [5,10]) an arbi-

trary vector ~f can be expanded in terms of eigenfunc-

tions in the following way

~f ¼
X1
j¼1

h~f ; ~Uji
k~Ujk2

~Ujð~nÞ ð21Þ

with the vector norm k~Ujk2 ¼ h~Uj; ~Uji. If we explicitly

distinguish in Eq. (21) between positive and negative

eigenvectors, Eq. (21) takes the following form
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~f ¼
X1
j¼0

h~f ; ~Uþ
j i

k~Uþ
j k

2
~U

þ
j ð~nÞ þ

X1
j¼0

h~f ; ~U�
j i

k~U�
j k

2
~U

�
j ð~nÞ ð22Þ

Now the solution of Eq. (9) can be reconsidered. The

solution of the problem ~Sð~x; ~nÞ will be obtained in the

form of the series given by Eq. (22). Therefore, the inner

product appearing in the expansion coefficients of Eq.

(22) must be determined. It can be shown [5,10] that

hL�~S; ~Uji ¼ h~S; L� ~Uji þ Uj2ð1Þgð~xÞ ð23Þ

The function gð~xÞ is given by

gð~xÞ ¼
0; ~x6 0; ~xP~x1
1; 0 < ~x < ~x1

�
ð24Þ

For a heating zone with half-infinite length, Eq. (24) has

been given by Papoutsakis et al. [5] for laminar flow in a

pipe and by Weigand [10] for turbulent flow in pipe and

channel flows.

Taking the inner product of both sides of Eq. (9) with
~Uj and using Eq. (23) one obtains

o

o~x
h~S; ~Uji ¼ kjh~S; ~Uji þ gð~xÞUj2ð1Þ ð25Þ

Eq. (25) can be solved separately for positive and nega-

tive eigenvalues. This results in

h~S; ~U�
j i ¼ C�

0j expðk
�
j ~xÞ þ

Z ~x

�1
ðgð~xÞU�

j2ð1ÞÞ

� expðk�j ð~x� �xÞÞd�x ð26Þ

h~S; ~Uþ
j i ¼ Cþ

0j expðk
þ
j ~xÞ �

Z 1

~x
ðgð~xÞUþ

j2ð1ÞÞ

� expðkþj ð~x� �xÞÞd�x ð27Þ

Because the solution must be bounded for ~x ! þ1 and

for ~x ! �1, the two constants C�
0j and Cþ

0j, appearing in

Eqs. (26) and (27) must be 0. After carrying out the inte-

grations in Eqs. (26) and (27) the following results for

hð~x; ~nÞ, which is the first vector component of ~F ð~x; ~nÞ,
can be derived

~x6 0 :

hð~x; ~nÞ ¼ �
X1
j¼1

Aþ
j U

þ
j1ð~nÞ expðk

þ
j ~xÞ½1� expð�kþj ~x1Þ�

ð28Þ

0 < ~x < ~x1 :

hð~x; ~nÞ ¼
X1
j¼1

A�
j U

�
j1ð~nÞ½expðk

�
j ~xÞ � 1� �

X1
j¼1

Aþ
j U

þ
j1ð~nÞ

� ½1� expðkþj ð~x� ~x1ÞÞ� ð29Þ

The above given equation can further be simplified by

showing that
P1

j¼1

Uj2ð1ÞUj1ð~nÞ
kj ~Ujk k2 ¼ 1 (see Appendix A).

Therefore, one obtains from Eq. (29)
0 < ~x < ~x1 :

hð~x; ~nÞ ¼ 1þ
X1
j¼1

A�
j U

�
j1ð~nÞ expðk

�
j ~xÞ

þ
X1
j¼1

Aþ
j U

þ
j1ð~nÞ expðk

þ
j ð~x� ~x1ÞÞ ð30Þ

~xP~x1 :

hð~x; ~nÞ ¼
X1
j¼1

A�
j U

�
j1ð~nÞ expðk

�
j ~xÞ½1� expð�k�j ~x1Þ�

ð31Þ

with the constants Aj given by Refs. [5,10]

Aj ¼
Uj2ð1Þ
kjk~Ujk2

ð32Þ

From Eq. (30) it can be seen that the solution for

0 < ~x < ~x1 contains both negative and positive eigen-

functions. This shows clearly that for a heating zone

of finite length axial heat conduction effects in the

flow will always change the temperature field near the

start and the end of the heated zone. This shows also

nicely the elliptic nature of the problem under

investigation.

For the designers of heat exchangers it is of great

interest to know the axial variation of the Nusselt num-

ber. The Nusselt number, based on the hydraulic diam-

eter of the duct, is defined by

NuD ¼
DoT

on

��
n¼L

T w � T b

ð33Þ

where the bulk temperature Tb appearing in Eq. (33) is

given by

T b ¼
Z L

0

uTrF dn
Z L

0

urF dn
�

ð34Þ

Sometimes a ‘‘modified bulk-temperature’’ is used in-

stead of Eq. (34). This ‘‘mixing cup’’ temperature in-

cludes also the effect of axial heat conduction in the

flow [15]. However, if one needs a representative mean

temperature at any desired cross-section of a duct flow,

probably the best information is given, according to

Tamir and Taitel [15], by adopting the traditional defini-

tion given by Eq. (34).

Introducing the dimensionless quantities given by Eq.

(2) into Eqs. (33) and (34) and using the temperature dis-

tribution given by Eqs. (28) and (31) results in the fol-

lowing expressions for the bulk-temperature

~x6 0 :

hb ¼ �ðF þ 1Þ
X1
j¼1

Aþ
j

Z 1

0

Uþ
j1ð~nÞ~u~rF d~n expðk

þ
j ~xÞ

� ½1� expð�kþj ~x1Þ� ð35Þ
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0 < ~x < ~x1 :

hb ¼ 1þ ðF þ 1Þ
X1
j¼1

Aþ
j

Z 1

0

Uþ
j1ð~nÞ~u~rF d~n expðk

þ
j ð~x� ~x1ÞÞ

þ ðF þ 1Þ
X1
j¼1

A�
j

Z 1

0

U�
j1ð~nÞ~u~rF d~n expðk

�
j ~xÞ ð36Þ

~xP~x1 :

hb ¼ ðF þ 1Þ
X1
j¼1

A�
j

Z 1

0

U�
j1ð~nÞ~u~rF d~n expðk

�
j ~xÞ

� ½1� expð�k�j ~x1Þ� ð37Þ

and for the Nusselt number

~x6 0 :

NuD ¼
�4
P1
j¼1

Aþ
j U

0þ
j1 ð1Þ½expðk

þ
j ~xÞ � expðkþj ð~x� ~x1ÞÞ�

4F
P1
j¼1

Aþ
j

R 1

0
Uþ

j1ð~nÞ~u~rF d~n½expðk
þ
j ~xÞ � expðkþj ð~x� ~x1ÞÞ�

ð38Þ

0 < ~x < ~x1 :

NuD ¼
�4
P1
j¼1

Aþ
j U

0þ
j1 ð1Þ expðk

þ
j ð~x� ~x1ÞÞ � 4

P1
j¼1

A�
j U

0�
j1 ð1Þ expðk

�
j ~xÞ

N
ð39Þ

N ¼ 4F
X1
j¼1

Aþ
j

Z 1

0

Uþ
j1ð~nÞ~u~rF d~n expðk

þ
j ð~x� ~x1ÞÞ

þ 4F
X1
j¼1

A�
j

Z 1

0

U�
j1ð~nÞ~u~rF d~n expðk

�
j ~xÞ ð40Þ

~xP~x1 :

NuD ¼
�4
P1
j¼1

A�
j U

0�
j1 ð1Þ½expðk

�
j ~xÞ � expðk�j ð~x� ~x1ÞÞ�

4F
P1
j¼1

A�
j

R 1

0
U�

j1ð~nÞ~u~rF d~n½expðk
�
j ~xÞ � expðk�j ð~x� ~x1ÞÞ�

ð41Þ

If the limit ~x1 ! 1 is introduced in the above given

expressions for the bulk-temperature and the Nusselt

number, they reduce to the expressions given by

Weigand [10] for a heating zone which is half-infinite

in length.
3. Results and discussion

In order to obtain solutions of the energy equation

(4), the turbulent Prandtl number and the ratio (ehx/
ehn) appearing in Eqs. (6) and (7) have to be specified.

There is a variety of different models in the literature

prescribing the turbulent Prandtl number. Especially in

the case of liquid metal flows the values for Prt given
by several models are quite different. A good literature

review concerning different models for the turbulent

Prandtl number can be found in [13]. For the results pre-

sented here the extended Kays and Crawford model of

Weigand et al. [14] was used because this model was able

to predict very well experimental results for the Nusselt

numbers for liquid metal flows. The reader is referred to

[14] for more details. The model for the turbulent Pran-

dtl number is given by

Prt ¼
1

2Prt1
þ CPet

ffiffiffiffiffiffiffiffiffi
1

Prt1

s 

�ðCPetÞ2 1� exp � 1

CPet
ffiffiffiffiffiffiffiffiffi
Prt1

p
� �� ���1

ð42Þ

with the quantities

Pet ¼ ~emPr; C ¼ 0:3; Prt1 ¼ 0:85þ 100

PrRe0:888D

ð43Þ

In addition the assumption was made that the ratio

of the axial diffusivity to the radial diffusivity ehx/ehn,
appearing in Eq. (6), is equal to 1. This assumption

has been proven to be correct for the here considered

range of parameters. The reader is referred to Weigand

et al. [11] for more detailed information on this subject.

3.1. Numerical procedure and accuracy of the predictions

The eigenvalues kj as well as the eigenfunctions Ujð~nÞ
were calculated numerically for the eigenvalue problem

given by Eq. (18) by using a four-stage Runge–Kutta

scheme. In order to examine the accuracy of the calcu-

lated values several calculations were carried out for

laminar flows. The results for laminar pipe flow could

be compared with the values given in Papoutsakis

et al. [5] for different values of the Peclet number. The

eigenvalues calculated here agree for the case of laminar

pipe flow (a1 = a2 = 1, ~u ¼ 2ð1� ~n2Þ) within a relative

error of jDkjj/jkjj < 10�7 while the calculated constants

Aj were found to be in agreement with the values given

by Papoutsakis et al. [5] within a relative error of

jDAjj/jAjj < 10�6. In addition, the calculated values for

eigenvalues are in very good agreement with those of

Deavours [6] for laminar flow in a parallel plate channel.

For turbulent flow, the eigenvalues and constant coin-

cide with the ones reported by Weigand [10]. Several

comparisons of the analytical calculations with experi-

mental data and numerical calculation for the special

case of a heating zone which is half-infinite in length

can be found in Weigand [10].

3.2. Heat transfer in a circular pipe

If the flow and heat transfer in a circular pipe is con-

sidered, the flow index F in the preceding equations must

be set to 1. First we will investigate a laminar flow,



Fig. 2. Comparison between numerically [7] and analytically

predicted distributions of the bulk-temperature for laminar pipe

flow.

Fig. 3. Radial temperature distribution near the beginning

(~x ¼ 0:01) and the end (~x ¼ 0:49) of a heating section with finite

length (~x ¼ 0:5) for different values of the Peclet number

(laminar pipe flow).

Fig. 4. Distribution of the bulk-temperature for laminar pipe

flow (~x1 ¼ 0:5) for different Peclet numbers.
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because most of the effects can be elucidated clearly for

this kind of flow. For a very long heating section Hen-

necke [7] predicted numerically the heat transfer in a

laminar pipe flow with axial heat conduction effects.

Fig. 2 shows a comparison between the analytically pre-

dicted bulk-temperature and the numerical values of

Hennecke. It can be seen that the agreement between

both calculations is excellent for the two considered val-

ues of the Peclet number PeD = 1 and 10. Fig. 3 shows

the effect of the axial heat conduction for a heating zone

which is finite in length (~x1 ¼ 0:5) for laminar flow. Fig.

3a shows the temperature distribution in the fluid near

the beginning of the heating zone, whereas Fig. 3b shows

the temperature profiles near the end of the heating

zone. From Fig. 3a, it can clearly be seen that the tem-

perature profile strongly deviates from the one without

axial heat conduction (parabolic calculation). This is be-

cause heat is taken out from the heating zone towards

the un-heated pipe section. This results in a preheating

of the fluid before it approaches the heating section.

Near the end of the heating section, Fig. 3b, a similar

effect can be noticed. Due to the axial heat conduction

effects within the flow, the fluid looses heat near the

end of the heating section and the fluid temperature is

lower as in the case of the parabolic situation (no axial

heat conduction effects in the flow). Of course, the axial

heat conduction effect influences also the distribution of

the bulk-temperature. This can be seen in Fig. 4, where

the distribution of the bulk-temperature is depicted for

different values of the Peclet number for laminar flow.

For the parabolic calculation the bulk-temperature is 0

at ~x ¼ 0, because of the prescribed inlet temperature

for this case. With decreasing values of the Peclet num-

ber, the bulk-temperature then obtains a flatter shape,

which shows very nicely the heat transfer in axial direc-

tion. In Fig. 4, a different scaling for the x-axis has been

used. The values have been plotted against x̂ ¼ ~x=~x1. By

scaling the x values with the length of the finite heating

zone, the effect of a different length of the heating zone



Fig. 7. Relative deviation between the local Nusselt number for

a parabolic and elliptic calculation for laminar pipe flow and

PeD = 10.
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can be compared easily. Fig. 5 shows the distribution of

the local Nusselt number for laminar flow and different

values of the Peclet number. It can be seen that the Nus-

selt number distribution for lower values of the Peclet

number increases near the end of the heating section.

This behaviour is due to the loss of heat near the end

of the heating section and has also been observed in

the numerical study of Hennecke [7]. In contrast to the

parabolic case, the Nusselt number attains also different

values after the end of the heating section, where the

wall temperature has been lowered back to T0. Fig. 6

shows the influence of a different length of the heating

section on the bulk-temperature for a Peclet number of

PeD = 2 for laminar flow. The figure shows clearly,

how the full heating section is more and more influenced

by axial heat conduction effects, if the heating section is

getting shorter. This means that in such a case a para-

bolic calculation would be completely misleading. This

can be seen even more clearly in Fig. 7, where the devi-
Fig. 5. Local Nusselt number for a laminar pipe flow and a

finite heated section of ~x1 ¼ 4.

Fig. 6. Influence of the length of the heated section on the

distribution of the bulk-temperature for laminar pipe flow and

PeD = 2.

Fig. 8. Comparison of local Nusselt number distributions for

laminar and turbulent flows in a circular pipe (~x1 ¼ 1).
ation between the Nusselt numbers from a parabolic cal-

culation and an elliptic calculation (including axial heat

conduction effects) are compared. It can be seen that the

relative error DE = (Nuel � Nupar)/Nuel increases rapidly

for the here considered Peclet number of 10, if the length

of the heating section is decreased in length. For turbu-

lent flow, the heat transfer is enhanced by the turbulent

fluctuations. Fig. 8 shows a comparison of Nusselt num-

bers for laminar and turbulent pipe flow for a heated

zone with finite length. It can be clearly seen that the

general behaviour of the Nusselt number is similar, how-

ever, the absolute level of the heat transfer is of course

higher for turbulent flow.

3.3. Heat transfer in a parallel plate channel

For flow and heat transfer in a parallel plate channel,

the flow index F in the equations must be set to 0. In

general one can conclude that the behaviour of the



Fig. 9. Bulk-temperature for laminar flow in a parallel plate

channel for different Peclet numbers.
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solutions for the here considered cases is similar to the

ones for a circular pipe. Fig. 9 shows the distribution
Fig. 10. Difference in bulk-temperature between parabolic and

elliptic calculations for different lengths of the heating zone.

Fig. 11. Comparison between analytical and numerical solu-

tion of the bulk-temperature for a parallel plate channel with

turbulent flow (ReD = 40000, Pr = 0.01).
of the bulk-temperature for different values of the Peclet

number for a heating zone which is large (~x1 ¼ 5). Sim-

ilar to Fig. 4 it can be seen how the axial heat conduc-

tion effect lowers the values of the bulk-temperature

within the heated zone. Fig. 10 shows the difference be-

tween the bulk-temperature from a simplified parabolic

calculation and the present predictions for different val-

ues of the length of the heated zone. It is clearly visible,

how axial heat conduction effects change the heat trans-

fer behaviour for a short heated section. Fig. 11 com-

pares the analytical predicted local bulk-temperature

distribution with the numerical calculation by Weigand

et al. [11] for a finite heated section (ReD = 40000,

Pr = 0.01). It can be seen that both solutions are in very

good agreement.
4. Conclusions

According to the present analytical study concerning

the influence of axial heat conduction within the fluid,

the following major conclusions can be drawn:

• Axial heat conduction effects in the fluid are impor-

tant for low Peclet numbers. However, if short heat-

ing sections are considered, these effects might

drastically influence the heat transfer behaviour even

for higher Peclet numbers.

• The obtained analytical predictions agree well with

numerical calculations from literature.

• The here presented solution is as simple and efficient

to compute as the related solution of the parabolic

problem.
Appendix A. In this appendix it will be shown how to

obtain the following equation
X1
j¼1

Uj2ð1ÞUj1ð~nÞ
kjk~Ujk2

¼ 1 ðA:1Þ

If one expands the vector ~f ¼ ð1; 0ÞT into a series

according to Eq. (21), one obtains for the first vector

component

1 ¼
X1
j¼1

Uj1

k~Ujk2
Z 1

0

a1ð~nÞ~rFUj1

Pe2L
d~n ðA:2Þ

Now the integral in Eq. (A.2) can be rewritten. First, one

can replace the integrand by using Eq. (18). This results

inZ 1

0

a1ð~nÞ~rFUj1

Pe2L
d~n ¼ 1

kj

Z 1

0

~u~rFUj1 d~n� Uj2ð1Þ
� �

ðA:3Þ

The integral on the right hand side of Eq. (A.3) can be

further rewritten and one obtains
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1

kj

Z 1

0

~u~rFUj1 d~n ¼ �
Z 1

0

Uj2

~rF a2

Z ~n

0

~u~rF dn̂
� �

d~n

¼ �
Z 1

0

Uj2cð~nÞd~n ðA:4Þ

Inserting Eq. (A.4) into Eq. (A.3) and this result into Eq.

(A.2) gives

1 ¼ �
X1
j¼1

Uj1ð~nÞ
k~Ujk2

Z 1

0

Uj2cð~nÞd~n�
X1
j¼1

Uj1ð~nÞUj2ð1Þ
k~Ujk2

ðA:5Þ

In order to show that this expression is identical to Eq.

(A.1), one has to show that the first sum on the right

hand side of this equation is 0. Expanding the vector
~f ¼ ð0; cð~nÞ~rF a2ÞT into a series, one obtains for the first

vector component

0 ¼
X1
j¼1

Uj1

k~Ujk2
Z 1

0

cð~nÞUj2 d~n ðA:6Þ

Eq. (A.6) shows that the first sum in Eq. (A.5) is 0 and

therefore, Eq. (A.1) is obtained.
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